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Relativistic dynamics of charges in external fields: the Pauli 
algebra approach 

W E Baylis and George Jones 
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4 

Received 16 June 1988 

Abstract. The Pauli algebra is used to study the relativistic motion of charged particles in 
external electromagnetic fields. Plane-wave solutions to Maxwell’s equations, in particular 
standing waves with electric and magnetic fields which are everywhere parallel, are easily 
represented and analysed in a gauge-independent treatment. We derive the 4-momentum 
of electromagnetic fields and show how the integrals for fields of a charged particle can 
be evaluated with integration limits specified in the rest frame of the moving charge. The 
general solution of the Lorentz force equation is shown to be a Lorentz transformation 
with time-dependent rotation and boost parameters which, in the case of parallel fields, 
are trivially related to the magnetic and electric fields, respectively. With the Pauli algebra, 
an earlier derivation in the Dirac algebra of the 4-velocity in constant uniform fields is 
greatly simplified and extended to arbitrary initial motion, and solutions are found to 
motion in a Coulomb field and in the presence of arbitrarily polarised (monochromatic, 
directed) plane waves. 

1. Introduction 

In a previous paper (Baylis and Jones 1989), we have seen how the Pauli algebra P, 
as the Clifford algebra in Euclidean 3-space is known, provides a natural framework 
for component-free covariant treatments of problems in special relativity. Minkowski- 
space 4-vectors and antisymmetric second-rank tensors are simple elements of 9 ,  which 
in any given inertial reference frame are easily written as the sum of time (9-scalar) 
and space (vector) parts. Higher-rank tensors appear in contracted form. Although 
9 can be represented by 2 x 2 matrices, the algebraic products of vectors and scalars 
are so simple that Lorentz transformations and other manipulations of elements are 
easily found without reference to matrices or components. The formalism we have 
developed is applicable to a wide range of problems in relativistic physics and allows 
straightforward comparisons to formulations in the Dirac algebra or to traditional 
work with Minkowski-space components. 

We have already applied the Pauli algebra approach to relativistic kinematics and 
to problems involving compounded Lorentz transformations (Baylis and Jones 1988). 
However, some of the most impressive applications of the approach are to classical 
electrodynamics. The purpose of this paper is to present some of these applications. 

The Dirac algebra D, the Clifford algebra for products of Minkowski-space 4- 
vectors, seems the more natural choice for problems in special relativity, and it has 
been extensively investigated for this purpose (Chisholm and Common 1986, Grieder 
1984, Hestenes 1966, 1974, Salingaros 1985a, b, 1986a, Salingaros and Dresden 1983). 
However, the smaller 9, which is isomorphic to the even half D, of D, is capable of 
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18 W E  Baylis and G Jones 

handling essentially all physical applications of D with considerable advantage in 
economy (Baylis and Jones 1988, 1989). 

The power of the Dirac algebra has been recently demonstrated by a calculation 
of the relativistic motion of a charge starting from rest in an arbitrary but constant 
and uniform electromagnetic field (Salingaros 1985a). In this paper, we repeat and 
extend these results using the Pauli algebra to cases of arbitrary initial motion of the 
charge and to motion in a Coulomb field and in an arbitrarily polarised plane wave. 
We also extend a result of Rohrlich (1960) dealing with the flow of energy-momentum 
in a classical model of a charged particle. 

In § 2 the basic equations of electrodynamics are given and the energy-momentum 
density of fields is derived. A Lorentz transformation of a differential operator is 
illustrated here. We also analyse plane waves, including standing waves with parallel 
electric and magnetic fields, in a simple gauge-independent treatment. In § 3, solutions 
of the Lorentz force equations are found and are presented as time-dependent Lorentz 
transformations of the initial 4-velocity. For a magnetic field, the transformation is a 
pure rotation, whereas for an electric field of fixed direction, the transformation is a 
pure boost. Results are summarised in P 4. 

2. Basic equations of electrodynamics 

2.1. Maxwell’s equations 

In P, Maxwell’s equations are embodied in the single equation 

aF = 477.7 (1) 

F = a A =  E + i B  ( 2 )  

which relates the electromagnetic field 

to the 4-current density J = p + J through the differential operator a = a, + V (Baylis 
and Jones 1989). Here the vector potential A = 4 + A  is assumed to obey the Lorentz 
condition 

a . A = a . i i = a , +  + V e A  = 0 (3 1 
and we have used Gaussian units with c = 1. The covariance of (1) follows from the 
behaviour of 4-vectors (like a, A and J )  and 6-vectors (like F )  under restricted Lorentz 
transformations L = exp(w/2 -i@/2):  

A +  LAL’ F + LFZ. (4) 
Any element in P can be uniquely decomposed into four parts: (real) scalar, 

pseudoscalar, (real) vector and pseudovector. The four corresponding parts of (1) 
give the usual Maxwell’s equations ior V * E ,  V B, V x B and V x E, respectively, as is 
easily seen when aF= (a,+V)(E+iB) is expanded according to the simple rule for 
vector products in 9: 

( 5 )  ab = a.  b + ia  x b. 

Becacse multiplication in P is associative, Maxwell’s equations (1) can be expressed 
equivalently by the wave equation 

OA=aadA=4rJ.  ( l a )  
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Here J is the electric current density. A current of magnetic monopoles could be 
added by replacing J by the complex element J -$ J‘”+ iJ‘””, whose real and imaginary 
parts give the electric and magnetic components, respectively. According to ( l a ) ,  the 
4-potential A then also becomes complex. The rule (Baylis and Jones 1989) that 
physical 4-vectors be represented by real elements of 9’ seems to exclude magnetic 
monopoles. However, even without this rule, the absence of magnetic charges is 
indistinguishable from the universal existence of a magnetic charge in a constant ratio, 
say tan 4, to the electric charge, since then J can be replaced by J exp(i+), where J 
is real, and the phase factor exp(i4) can be removed from Maxwell’s equation (1) by 
a duality rotation (Baylis and Jones 1989). The continuity equation a . f = O  results 
simply from Maxwell’s equation (1) and the vanishing of the scalar part of O F .  

2.2. Plane-wave solutions 

Solutions to Maxwell’s equation (1) in source-free ( J = O )  space may be written as 
linear combinations of plane-wave solutions, each with a definite propagation 4-vector 
k. In these plane-wave solutions, the spacetime dependence of the field is given by 
the scalar E.x  = ut - k - x :  

F =  F ( E . x ) .  ( 6 )  

,l&s u2 - k 2  = 0 (7) 

The wave equation for F, namely 0 F = 0, then gives 

and Maxwell’s equation (1) becomes an eigenvalue equation 

k*F=F. (8) 

Since the scalar part of F is zero, k ^ *  F = 0 and F must have the form 

F = F = L (  2 l + k ^ ) l f ( E * x )  

= f ( i + i i j ) f ( E - x )  (9) 

where i is any real unit vector in the plane normal to 6, 4 = k* x i and f is an arbitrary 
scalar function. We note in passing that $(l+k^) is the eigenprojector of E with 
eigenvalue 0 (Baylis and Jones 1989). 

A rotation is a Lorentz transformation (4) for which L is unitary. A rotation of 
the plane wave (9) about the direction of propagation k* is especially simple: 

F + exp( -i&/2) F exp(i4k*/2) = exp( -i&) F = exp( 4 4 )  F. (10) 

Here we first used the fact that k* and F are perpendicular and hence anticommute 
(see ( 5 ) )  and then we applied the eigenvalue equation (8). Consequently, if f ( E . x )  
is proportional to exp(*i&* x), the solution (9) describes a circularly polarised plane 
wave of helicity *l, i.e. one in which at any fixed position x, the field F rotates about 
k* at the angular frequency * W .  On the other hand, if the complex phase o f f  is 
constant, the solution (9) represents a linearly polarised plane wave. 

More generally, the solution (9) represents a directed monochromatic plane wave 
whose polarisation may be circular, linear or elliptical. Its 4-momentum density is the 
constant 4-vector 

FF+/8.rr=$(1+k^)~~(l+k^)lf12/8.rr=f(l+k*)lf/2/8rr (11) 
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with a non-vanishing vector part and 
identially zero: 

F2 = E2 - B2+ 2iE. B =$( 

Note that the integral iSd4xF2=S-  

its Lorentz invariants E’-  B2 and E- B are 

+ L)i( 1 + L){ f2  = 0. (12) 
Q gives the action S and pseudocharge Q 

(Brownstein 1986). The functional form off( L a x )  and hence its polarisation is invariant 
under restricted Lorentz transformations (4). 

Standing plane waves can be formed by superimposing one plane wave with 
propogation vector k = w + k with another with propogation vector E =  w - k. There- 
fore, they have the form 

Such a wave is monochromatic only in frames with no longitudinal motion ( v .  k̂  = 0) 
with respect to the laboratory frame. The 4-momentum density of such a wave is 

F = :( 1 + L)if l (  E .  X )  + +( 1 - $)if2( k * x ) .  (13) 

and the Lorentz invariants (compare (12)) are 

F2=i(l+$)Z(l - R ) { f ~ ~ = f i ( R . X ) f 2 ( k . x ) .  

2.3. Waves with parallel electric and magnetic jields 

Chu and Ohkawa (1982) have recently pointed out the existence of standing waves 
whose electric and magnetic fields are everywhere parallel. In spite of arguments that 
such waves do not exist (Lee 1983, Salingaros 1985b, 1986b), it now seems clear that 
they do (Chu 1983, Zaghloul et a1 1987, 1988, Chu and Ohkawa 1987). Their existence 
and properties are easily examined with the aid of our Pauli algebra approach. In 
contrast to earlier treatments, ours is gauge invariant. 

The property that E is everywhere parallel to B is established by the condition 
that E x B, and hence the vector part of the 4-momentum density, vanishes identically. 
From (14), this condition is fulfilled if and only if I f l (  E .  x)l = If2( k .  x)l at all x.  Since 
the scalar arguments E . x  and k ’ x  are different functions of x,  it is necessary and 
sufficient that the two superimposed plane waves be pure circularly polarised waves 
of the same amplitude: 

J ( s )  =fo exp(-iA,s) j = l , 2  (16) 
where A, is the helicity of the j th  directed plane wave. (We have chosen the arbitrary 
origin x = 0 to be at a position where the phases of the oppositely propagating plane 
waves are equal.) The 4-momentum density for such waves (14) has only an energy part 

F F + ~ ~  = I foI2ph (17) 
and the nature of the Lorentz invariants F2 depends on whether A I  = h2 or A I  = - A 2 .  
There are thus two types of standing plane wave with parallel electric and magnetic 
fields and there are two ‘helicities’ associated with each type. 

Type-I waves have their component helicities equal: A I  = A 2  = A = *l. The direction 
of the electromagnetic field F of such waves is frozen in time but rotates as a function 
of k-x :  

F, = f o  exp(-iAwt)(icos k.x-A$ sin k - x )  

= f o  exp[-iA(wt-Lk-x)]i 
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whereas its Lorentz-invariant square 

F: = f exp(2iAwt) (19) 

is uniform in space but oscillates in time. The individual electric- and magnetic-field 
amplitudes oscillate in time and are a quarter-cycle out of phase. 

Type-I1 waves have components of opposite helicities: A 2  = - A l  = A = i l .  The 
electromagnetic field now has a direction which is the same at all positions but rotates 
in time: 

Fll= f,exp(iAk*x)({cos u t + $  sinwt) 

= fo  exp[iA ( k  * x - k t ) ] ;  

whereas its Lorentz-invariant square 

F:, = f exp(2iAk.x) 

is frozen in time but oscillates as a function of k - x .  Note that to derive the second 
more compact relatioFs for F, (19) and F,, (20), we used a simple identity for the 
rotations of { about k by the angle 6: 

exp(-i#i/2){ exp(i&2) = exp(-i&{= { cos 4 + $ sin 4. (22) 
The waves proposed by Chu and Ohkawa (1982) are type-I waves with A = +l. 

The generalisation of Zaghloul et al (1987) includes also type-I1 waves (Chu and 
Ohkawa 1987), and indeed their condition relating magnitudes of derivatives of the 
vector-potential components is equivalent to our condition on Ifj(s)l. (Whether or not 
the derivatives have parallel directions is not meaningful for the real vector potentials 
since they rotate in spacetime with different x dependencies.) We also see that the 
average of the action and pseudocharge of type-I and I1 waves vanishes as expected 
(Brownstein 1986). However, superpositions of type-I1 waves do exist with vanishing 
DC components but finite action S and pseudocharge Q. The field 

1 “  
F = - I d w f ( w )  exp[ih ( k .  x - k t ) ] [  f ( O ) = O  

2.rr 0 

has S - i Q =  ( . r rA/4) [ f ’ (0) l2 ,  wheref’(0) is the slope of f ( w )  in the limit w + O .  That 
such waves are of little practical value follows from the property by which they escape 
the conditions of Brownstein’s (1986) proof of vanishing S - iQ: they are spatially 
unbounded at all times t .  

2.4. The Lorentz force equation 

The Lorentz force equation is easily derived from the rest-frame force law 

where U = y + U is the 4-velocity and r is the proper time. Equation (23) is not covariant: 
it is valid only in the frame which is instantaneously at rest with the particle. However, 
noting that Fre,,= LFL, L L =  1 and LL+ = U ,  we obtain 

L’ = iqL( LFL + L+F+L+) L+ m - =  Lm- 
d r  d r  
du durest 

= iq(  F u  + u F + )  (24)  
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which is the correct covariant generalisation of (23). The result is also readily obtained 
from a Lagrangian or Hamiltonian formalism, from which one finds the suggestive 
covariant form 

d.rr /d . r=d(i i .u)=qa(A*u) (25) 
where T = mu + qA (with A evaluated at the position of the charge) is the conjugate 
momentum and, on the right-hand side, the 4-velocity U and position x are treated as 
independent variables. The Lorentz scalar A* U is just the electric potential C$ in the 
rest frame of the charge. Consequently, (25) is a generalisation of the non-relativistic 
electrostatic force law, in which the force is -VC$. Equation (24) follows directly when 
one notes 

d.ir du dA du 
d.r d.r d.r d.r 
_-  - m-+q-= m-+qu.aA 

and expands the Lorentz scalars A.  U and U*;= ya, + u . V  according to 

A* U =;(Au + CA) u * a =  ;(u;+an). (27) 

2.5. Momentum conservation 

Momentum conservation for a system of sources and their associated fields follows 
directly from Maxwell’s equations and the Lorentz force equation. The total momentum 
p of a system of charges is found by integrating (24) and summing: 

p = c i q i  1 d ~ i ( F i u i + u i F ~ ) = ~  d4x(FJ+JF+)  (28) 
I I 

where d4x is the Lorentz-invariant 4-volume element and J is the current density 

The integrand on the right-hand side of (28), 

(FJ+ J F + ) / 2 =  J - E  + p E  + J X  B (30) 
may be interpreted as the time-rate of change of the kinetic energy-momentum density 
of the particles. When the covariant expression (28) for p is evaluated in any inertial 
frame, the time integration is indefinite and the calculated 4-momentum is that from 
the currents and fields inside the volume over which the spatial integration is performed. 
From Maxwell’s equation (11, 

$(FJ+JF+) = - [ F ( ~ F + ) + ( ~ F + ) F + ] / ~ ~  = - ( F ~ F + ) / &  (31) 

aF+ = Fd (32) 

where the derivative operates both forward and backward within the parenthesis, and 

is a real 4-vector. Now the 4-momentum density U + S and Maxwell stress tensor ‘i. 
are given by the Hermitian quantities 

FF+ = 8T( U + S )  F f i P  = 8 ~ (  fi - - fi * S ) .  (33) 

(FdF+) /8T  = - ( U + S )  - v ”+ v .s 
Consequently, 

(34) 
a 

a t  
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and (31) is simply a compact expression of the energy-momentum conservation of 
currents J and their associated fields (Jackson 1975). 

Substitution of (31) and (34) into (28) and partial integration (Gauss’s law) gives 
an integral expression for the total 4-momentum of the particles: 

P=-K d4x(FdF+) 

=-I d 3 x ( U + S ) +  I f  dt  d Z - ( ? - S )  (35) 

where d P  is a surface element and the integration is to be performed in the lab frame. 
For studying classical charges of finite size, however, one may want the volume 

and surface integrals to be referenced to the rest frame of the charge, as, for example, 
when the classical charge distribution vanishes inside a small sphere in the rest frame. 
The derivation is again straightforward, but now the differential operator in (35) needs 
to be expressed in terms of the rest-frame coordinates: 

a = La,&+ (36) 

so that the result of partial integration is expressed in terms of rest-frame integration 
elements. The result, where U is the 4-velocity of the particle, is a generalisation of 
Rohrlich’s (1960) result in that now the surface terms are included: 

p = - d3~,,,,[yU- u.S+ y S +  U -  T] 

+ d t dZ [ U  U - S - ( - 1) 66. S + US + T + ( y - 1) 66. TI. (37) 

I 
I f  

In (37) we recall the rule (Baylis and Jones 1989) that, when various multiplication 
types appear together in the same level of parenthesis, scalar (dot) products are to be 
evaluated before normal algebraic products. 

3. Solutions of the Lorentz force equation 

The formal solution of the Lorentz force equation (24) is a time-dependent Lorentz 
transformation of ~ ( 0 ) :  

U(.) = L ( T ) u ( o ) L ( T ) +  (38) 

where the transformation is a unimodular element satisfying 

d 4 - L( r )  = --F( T )  L( r )  
d r  2m 

which can be written as an exponential 

(39) 

Here F(r) is the electromagnetic field at the position of the charge at proper time T. 
Generally it is known only once U is determined and integrated. If F changes direction 
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as a function of proper time, then since vectors in different directions do not commute, 
L (equation (40)) must be treated as a time-ordered exponential: 

L ( T )  = 1 +4 2m 1: dT1 F ( T , ) + ( ~ ) ~  1; dr ,  1: dT2 F(r1)F(T2)+. .  . . 

Of course if the (complex) direction of F is constant, then F at different times commute 
and the Dyson expansion (41) is identical to the simple exponential,. 

Consider first several special cases in which F has a constant direction. 

3.1. Parallel electric and magnetic fields 

The Lorentz transformation is the product of a commuting boost and rotation (a 'rifle' 
transformation), where the boost parameter is a linear function of the electric field 

c _  

and the rotation angle is a linear function of the magnetic field 

3.2. Arbitrary constant and uniform fields 

A class of inertial frames can always be found in which the electric and magnetic fields 
are parallel or in which one of the fields vanishes; the solution of § 3.1 can then be 
used with the appropriate boost. Alternatively, the transformation (38) can be calcu- 
lated directly by expanding (see (10) of Baylis and Jones (1989)) 

exp( 5 Fr) = cosh( 2 fT) + F sinh( 2 fT) f --' (44) 

where here the scalar f is the Lorentz-invariant complex length of I; 

f'= FF= E 2 -  B2+2iE. B (45) 

whose real and imaginary parts E = 53?L p = 4f are just the magnitudes of the electric 
and magnetic fields in any frame where these are parallel. (They can be easily expressed 
in terms of the Lorentz invariant quantities of (45).) The resulting solution for arbitrary 
initial 4-velocity uo is 

r i  
L . 1  

( E * + p y  u = i uo(cosh ES +cos ps) + 

where 

[ e ]  = %[FuF+(sinh es+i  sin ps)]+~Fu,F+(cosh ES-COS p s )  
= ( yoE + uo E + uo x B)( E sinh ES + p sin p s )  

+ ( y o B + u o ~ B - u o x E ) ( p  sinh E S - E  sinps)  

1 
8 T  

+- [yo( U + S )  + u O *  T - UO *S](COS~ ES - COS Ps). 
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3.3. Arbitrarily polarised directed plane wave 

We consider the plane wave (9) with a well defined propagation vector k and note 
that the complex direction of F is constant, even in the case of a circularly polarised 
wave, for which E and B rotate about i. As a result, a single integral is sufficient to 
determine the Lorentz transformation (40). In fact, since F2 = 0, L(7)  reduces to 

L(T)=l+-( t+ i7 j )  4 
4m (47) 

In the case of circularly polarised waves, there is a class of inertial frames in which 
the kinetic energy ( y  - 1)m of the charge is constant. The integral is then easily 
performed and the resulting 4-velocity (38) determined. For e!liptically polarised 
waves, however, y changes in time and another approach is simpler. The Pauli algebra 
permits a simplification and minor extension of the treatment by Landau and Lifshitz 
(1975). 

Consider a 4-potential A whose time average vanishes ( ( A )  = 0) and which satisfies 
the Lorentz condition (3) and depends on the 4-position x through the scalar Lex = 
ot - k - x .  From the Lorentz-force equation in form ( 2 5 ) ,  one sees that d r / d T  is a 
Lorentz-scalar function times k = o + k :  

d.rr/dr = qd(A* U )  = qk(A '*  U )  (48) 

where A' is the derivative of A with respect to its argumen: E +  x. It is apparent that 
the part rI of the conjugate momentum perpendicular to k is constant: 

rL  = pI + qA, = constant (49) 

as is 6 -  7~ and hence E - p  (since E .  k = E - A  = 0): 
A 

E - k - p  = K =constant> 0. (50)  

If we choose a frame in which the time average ( p l ) = O ,  then 

and 

Subtraction of (50) from ( 5 2 )  yields 

(53) 
1 i . p  =- ( q 2 A : +  m 2 -  K 2 )  

2 K  

which, together with (51), gives the solution. The constant K is given by the initial 
conditions. For example, in a frame in which ( p )  = 0, K' = (q2A: )+  m2 and one finds 
the simple result 

PI = -qA, .  (54) * q' k - p  = - (A:  - (A:) )  = E - K 
2 K  
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3.4. Coulomb jield 

The field of a fixed charge Q at the origin is 

F = E = Q?/ r2. (55) 

Although F is static, F ( r )  at the position of the charge q changes in both magnitude 
and direction. We can find the appropriate Lorentz transformation by solving the 
differential equation (39), which with (55) has the form 

The problem is considerably reduced by changing variables to the azimuthal angle 0: 

d d O d  1 d 
d r  d r  d o  - mr2 do 

- 

where 1 is the magnitude of the angular momentum 

1 = lf= r x mu = fmr'dO/dr. 

Combining (56) and (57) we find 

dL/de  =&;L 

where a = qQ/l. Now ? is a function of 0: 

= exp(-if0/2)?(0) exp(if0/2). 

(57) 

By extracting the rotation exp( -i fO/2) from L( 0)  and putting 

L ( O )  = exp(- i f0/2)~,(0)  (61) 

one easily obtains the differential equation 

d 
- L,( 6 )  = fipL,( 6 )  
d o  

where p = f-iai(O), with the solution 

L,( e )  = exp(ipO/2). 

Instead of calculating U(@) as in (38), we calculate U as seen in the frame rotated by 
0 about f: 

exp(i f e / 2 ) ~ (  e )  exp(-i i0/2) = L,(o)u(o)  L:(o )  (64) 

which gives directly the radial (U,)  and tangential (U,) components of U. 

The calculation is straightforward. We decompose 

U = y + U,?+ U , f  X i 

and expand 

sin( PO/2) 
P L,( 0)  = cos(p0/2) + ip 
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where P = (p’)’’’ = (1 - The result is 

A-ap COSPO sin PO + au,(O) - 
P 2  P 740) = 

sin PO 
P 

U,( 0)  = U , ( O )  cos po + B- 

where A = y ( 0 )  + cyu,(O) and B = ay(O)+ u,(O). In fact, from (67) we see that y ( 0 )  + 
au,(O) is a constant. 

The trajectories of the charge are easily found from the relation (see (58)) 

Combining this with (67c), one sees that the trajectories are conic sections in the angle 
variable P O  if a’<1. The relations (67) can then be further simplified by defining 
0 = 0 to coincide with an apogee or perigee: u,(O) = 0. The initial parameters A and 
B can then be expressed in terms of the total energy 

E = y m + a l / r  (69) 

u,(o) = ( y 2 ( 0 )  - 1)l” = l /mr (O) .  (70) 

by noting 

One finds A = E / m  and B = (A2-P2)1 ’2 ,  in agreement, for example, with Schwartz 
(1968). 

The orbital precession predicted by special relativity is found from solutions to 
U,( 0)  = 0 when u,(O) = 0. One obtains additional perigees and apogees at 

= (1 - = nrr. (71) 
The resulting precession for a 2  << 1 is just one-sixth that predicted by general relativity 
(Einstein 1915, 1956) with la = GMm.  Our solutions (67) should also be valid for 
a’> 1 where p is pure imaginary. Then, however, there is only a single solution, 
namely 0 = 0, to U,( 0)  = 0. For a s -1, the trajectory is an inward spiral with ever- 
increasing kinetic energy: the charge q is captured if 16 -qQ. For -qQ = e*, this limit 
is well within the quantum regime: 1 < h /  137. 

The Lorentz transformation L,(O) is neither a pure boost nor a pure rotation. 
However, it can always be written as a product of a pure boost and a pure rotation: 

L,( e )  = exp(ip0/2) = exp(i112/2) exp(w/2). (72) 
By expanding the exponentials as in equation (10) of Baylis and Jones (1989) and 
equating scalar, pseudoscalar, vector and pseudovector parts, we easily find 

9 sinhiw = ?( 3) s h i p 0  

i 
P 

A t anhi l l  =- tandp0 

where ?(ll/2) is the radial unit vector when 0 = l l /2  (see (60)). For small angles 6 << 1, 
the transformation parameters 9 and 112 are small, and from (73b), 112- Con- 
sequently the full transformation (61) is nearly a pure boost. 
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At larger 8, a and 87 become distinct and L is a boost followed by a rotation 8 - R 
about f From (73b), the rotation, which includes effects of Thomas precession (Thomas 
1926,1927), is seen to be directly related to the orbital precession (see (71)). According 
to (73b), SZ must pass through a multiple of 277 every time p8 does. Because bound 
orbits, (67) and (68), repeat as pe increases by 27r, the rotation angle 8 -R advances 
by 8 - 21r every time 8 increases by 21r /p .  Thus, for example, if we imagine the charge 
q to have internal structure, the same part will point toward the attracting centre at 
every perigee. Interprztation of the finite results is less subject to ambiguities than are 
the usual infinitesimal treatments of Thomas precession, where problems relating the 
infinitesimal quantities to cumulative rotations and boosts may arise from lack of 
commutivity . 

The rotation predicted from (72) and (73) has the wrong sign and magnitude to 
be Thomas precession. In fact, it is the precession of a point charge and magnetic 
dipole with a g factor of g = 2, including the effects of Thomas precession. This 
surprising result will be discussed in more detail elsewhere. 

4. Conclusions 

One sees that the Pauli algebra shares much of the power and other advantages of 
larger Clifford algebras. Like the Dirac algebra, the Pauli algebra permits component- 
free covariant expressions and vector multiplication is associative and invertible. 
However, the Pauli algebra B is distinguished in being much simpler than its higher- 
order cousins. Indeed, it is the simplest Clifford algebra which includes both 3-space 
vectors and complex numbers. It requires only a minor extension of the mathematics 
familiar to all physicists (namely the algebraic multiplication of vectors, (3)) and the 
only outer (Grassmann) product needed is the usual cross product of 3-space vectors. 
All elements are complex linear combinations of scalars and vectors, and both real 
and imaginary parts of the scalars commute with all other elements. 

When one wants to express elements in terms of components, there is a matrix 
representation of B in which every element is written as a 2 x 2 matrix. Like the algebra 
itself, it is efficient and free of the excess baggage of many zero or symmetric elements. 
In most applications, however, the algebra is so simple that the explicit use of 
components and matrices is unnecessary. 
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